BLADDER ACCUMULATORS type AS and ASP

3.1.1 TECHNICAL DATA

MAX OPERATING PRESSURE (PS): 360 bar

PRESSURE TEST (PT): 1.43 x PS

NOMINAL CAPACITIES: 0.2 - 0.7 - 1 - 1.5 - 3 - 5 - 10 - 15 - 20 - 25 - 35 - 55 litres

WORKING TEMPERATURE: -40 ÷ +150 °C

COMPRESSION RATIO (Po: P2): max. 1:4

FLUID VISCOSITY RANGE: 10 ÷ 400 cSt

RECOMMENDED VISCOSITY: 36 cSt

FLUID CONTAMINATION DEGREE: class 21/19/16 according to ISO 4406/99

BODY MATERIAL:

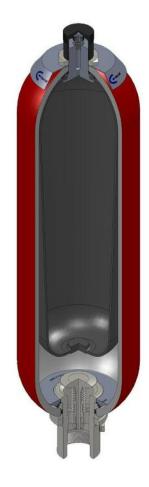
- carbon steel shell painted with rust inhibitor RAL 8012
- nickel coating 25 40 µ
- stainless steel AISI 316L
- internal and external coating with RILSAN th. 0.6 mm

VALVES MATERIAL:

- phosphated or galvanized carbon steel in compliance with Directive 2002/95/EC (RoHS) to resist to corrosion
- stainless steel AISI 316L
- nickel coating 25-40 µ

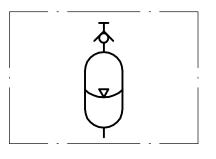
BLADDER MATERIAL:

- P = Nitrile rubber (NBR)
- F = Low temp. nitrile rubber
- H = Nitrile for hydrocarbons
- K = Hydrogenated nitrile (HNBR)
- B = Butyl (IIR)
- E = Ethylene-propylene (EPDM)
- N = Chloroprene (Neoprene)
- Y = Epichlorohydrin (ECO)
- V = Fluorocarbon (FPM)
- See Table 3.1c and/or Chapter 1.5


FILLING VALVE CONNECTION:

- 5/8"-UNF std
- 7/8" UNF
- ¼" BSP

FLUID PORT CONNECTION: see 3.1d


FLOW RATE: see Table 3.1e

WEIGHT: see Table 3.1e

3.1a

3.1.2 HYDRAULIC SYMBOL

3.1b

3.1.3 "AS and ASP" BLADDER ADVANTAGES

- dirt tolerant
- light weight
- compact
- simple construction
- quick response
- works well on water, low lubricity fluids
- quick, easy installation
- low cost

3.1.4 DESCRIPTION

Bladder-type accumulators consist of a seamless cylindrical pressure vessel made of high-tensile steel.

The accumulator is subdivided into a gas and fluid side by an elastic bladder mounted in the interior of the vessel.

The bladder is charged with nitrogen to the specified gas charge pressure P0 by means of gas valve.

When the fluid is pressed into the accumulator, the gas in the bladder is compressed and hence the pressure increased.

The gas volume reduces and on the fluid side, the fluid can flow into the accumulator. As soon as the pressure on the fluid side falls below the gas pressure, the accumulator is emptied.

Oil valve is provided in the oil port of the bladder-type accumulator and closes when the pressure on the gas side is higher than the one on the fluid side.

This prevents draining of the bladder into the oil channel and thus the bladder from being destroyed.

When the minimum operating pressure is reached, a small oil volume is to be maintained between the bladder and the fluid volume (approx. 10% of the nominal capacity of the hydraulic accumulator), in order that the bladder does not hit the valve during every expansion process.

Gas valve consists of external caps, sealing cap, filling valve, gas valve body and rubber coated washer. These parts can be replaced separately. The nameplate shows the technical data and features of the hydraulic accumulator.

3.1.5 EUROPE MARKET

All hydraulic accumulators are pressure vessels and are subject to the national regulations and directives valid at the place of installation.

Bladder accumulator type AS, up to and including 1 litre, must not be CE marked.

Bladder accumulator type ASP, up to and including 1 litre and max. pressure less than 200 bar, must not be CE marked.

For bladder accumulator type AS, greater than 1 litre and, in the case of ASP, greater than 1 litre or 1 litre but with max. Pressure higher than 200 bar every shipping batch is complete of a conformity declaration and instruction of use and maintenance and/or all documents requested.

All vessel categories (see Table 3.1e) must be protected by means of a pressure relief valve in accordance with Directive 97/23/EC.

3.1.6 ACCESSORIES

For support equipment, see Cap. 7 For gas side's safety equipment, see Cap. 8 For fluid side's safety equipment, see Cap. 9 For pre-loading and charging set, see Cap. 11 For other components, see Cap. 12

3.1.7 BLADDER-TEMPERATURE-LIQUID COMPATIBILITY

When selecting the accumulator variant, pay attention to the following non-binding notes with regard to hydraulic fluid, bladder material and the permissive temperature range. (see Section 1.5)

Code letter	Polymer	ISO	Temperature range (°C)	Some of the liquids compatible with the polymer
Р	Standard nitrile (Perburan)	NBR	-20 ÷ +80	Aliphatic hydrocarbons (propane, butane, gasoline, oils, mineral greases, diesel fuel, fuel oil, kerosene), mineral greases and oils, HFA - HFB - HFC fluids, many dilute acids, alkalis, saline solutions, water, water glycol.
F	Low temperature nitrile	NBR	The same as with standard nitrile + a number of different types of Freon. (This contains less acrylonitrile than the standard and is there- fore more suitable for low temperatures, but its chemical resistance is slightly lower).	
н	Nitrile for hydrocarbons	NBR	-10 ÷ +90	Regular and premium grade slightly aromatic gasoline (and all the li- quids for standard nitrile).
К	Hydrogenated nitrile	HNBR	-30 ÷ +130	The same as with standard nitrile but with excellent performance at high and low temperatures.
В	Butyl	IIR	-30 ÷ +100	Hot water up to 100°C, glycol-based brake fluids, many acids and bases, salt solutions, polar solvents such as alcohols, ketones and esters, polyglycol-based hydraulic fluids (HFC fluids) and bases of esters of phosphoric acid (HFD-R fluids), silicone oils and greases, Skydol 500 and 7000, resistance to ozone, aging and weathering.
E	Ethylene-Propylene	EPDM	-30 ÷ +100	Hot water up to 100°C, glycol-based brake fluids, many organic and inorganic acids, detergents, solutions of sodium and potassium, pho- sphate ester-based hydraulic fluids, (HFD-R), silicone oils and greases, many polar solvents (alcohol, ketones, esters), Skydrol 500 and 7000, resistance to ozone, aging and weathering.
N	Chloroprene (Neoprene)	CR	-30 ÷ +100	Mineral oils of paraffin, silicone oils and greases, water and aqueous solutions, refrigerants (ammonia, carbon dioxide, Freon), naphthenic mineral oils, low molecular aliphatic hydrocarbons (propane, butane, fuel), brake fluids based on glycol, better resistance to ozone, weathering and aging compared to NBR rubber.
Y	Epichloridrin	ECO	-30 ÷ +110	Mineral oils and greases, aliphatic hydrocarbons (propane, butane and gasoline), silicone oils and greases, water at room temperature, resistance to ozone, aging and weathering.
V	Fluorocarbon	FPM	-10 ÷ +150	Mineral oils and greases, non-flammable fluids of HFD group, silicone oils and greases, animal and vegetable oils and greases, aliphatic hydrocar- bons (gasoline, butane, propane, natural gas), aromatics hydrocarbons (benzene, toluene), chlorinated hydrocarbons (Tetrachloroethylene, car- bon tetrachloride), fuel (regular, super and containing methanol), excellent resistance to ozone, weathering and aging.

For other hydraulic fluid and/or temperatures, please consult us.

3.1 E04-11 BLADDER ACCUMULATORS type AS and ASP

3.1.8 ORDER CODE

	25	Ρ	360	С	R		G4	V	-	8	-	с	0	С	0	R250	1	3
											· · · · · ·						1	
		1•	Series	;									16	• Prec	harge	pressu	ıre (ba	ar)
	r accum				= AS	;						Ś	Stan	dard 3	0 bar	= 0 ÷ 30)0 (< F	PS)
danger		nulatoi	r for flui	a gr. 1	= AS	Ρ								15•	Othe	r varian	ts	
2	• Nom	ninal	capaci	ity (lit	res)							_	;	See the	e table	on front	page	
		Fig.	1 = 0.2 2 = 0.7	2									1	4 • Va	riants	s of gas	side	
		Fig. 2	2 = 1									Star	ndard				=	0
		Fig. 2 Fig. 2	2 = 1. 2 = 3	5										in stai		steel	=	•
		Fig. 2	2 = 5 2 = 10											meplat mbers/v		s to be re	= queste	_
		Fig. 2	2 = 10 2 = 15 2 = 20	5										13 • G	as va	lve mat	erial	
		Fig. 2	2 = 25	;								Carl	oon s				=	С
		Fig. 2 Fig. 2	2 = 35 2 = 55													steel 25 µ		
														steel	arbon	steel 40 j	= L =	
litrilo r			der ma	iterial	= P								1	2 • Va	riants	of fluid	side	
Nitrile ru Nitrile fo	or low t	emp.			- P = F							Star	ndard			••••••••	=	0
Nitril for			ns (HNBR	2)	= H = K											eel (R)	=	
Butyl (II	IR)				= B											iinless ste s to be re		
±thylen Chlorop			(EPDM) ene))	= E = N												·	
Epichlo Fluoroc	rohydri	n (EC	0)		= Y = V										uid va	lve mat		
		(11101)			•								oon s el co		arbon s	teel 25 µ	=	-
4 •	Max v	vorki	ng pre	ssure	e (PS)											teel 40 µ		
	See th	ne tabl	le on fro	ont pag	je							Stai	nless	steel			=	X
	5 .	• Bod	y mate	erial											st and	certific	ation	
			,		= C									esting (Russi	a)		=	0 1
Carbon		arhor	n steel 2		= N									n Stan	,		=	-
Carbon Nickel c					= M								(Chin	ia)			=	-
Nickel c Nickel c	coated o	carbon	steel 4	4 O								RIN		EC/for o			=	4
Nickel c Nickel c Stainles	coated o	carbon		μ 0	= X											areater tha	n 1 I) —	8
Nickel c Nickel c	coated o	carbon		-0 μ										/9EC	apacilles	greater tha	n 1 l) = =	
Nickel c Nickel c Stainles Rilsan c	coated on ss steel coating	carbon		·	= X = V							ATE DN\	X 94 /	/9ÈC		0	´= = 1	9 0
Nickel c Nickel c Stainles Rilsan c	coated c ss steel coating 6 • Flu	iid pc	steel 4	inectio	= X = V							ATE DN\ RTN	X 94 / I Pas	· ·	Ukrain	0	´=	9 0 1
Nickel o Nickel o Stainles Rilsan o	coated of ss steel coating 6 • Flu See th	iid po	ort con	inection	= X = V on	uid						ATE DN\ RTN	X 94 / I Pas eria p	/9ÈC sport (asspor	Ukrain t	e)	= =1 =1 =1	9 0 1
Nickel o Nickel o Stainles Rilsan o	6 • Flu See th	iid po	n steel 4	inection	= X = V on	uid						ATE DN\ RTN Alge	X 94 / I Pas eria p	/9ÈC ssport (asspor 9 • Ty	Ukrain t pe of	e) filling v	= = 1 = 1 = 1 alve	9 0 1 2
Nickel o Nickel o Stainles Rilsan o 7 • Din	6 • Flu See the nension	iid pc ne tabl	ort con	ont pag	= X = V on ge	uid						ATE DNV RTN Alge	X 94 / I Pas eria p ndard	/9ÈC ssport (asspor 9 • Ty I filling v	Ukrain t pe of valve 5	e)	= = 1 = 1 alve	9 0 1 2
Nickel o Nickel o Stainles Rilsan o 7 • Din	6 • Flu See the nension	iid pc ne tabl	ort con le on fro the co	ont pag	= X = V on ge	uid						ATE DNV RTN Alge Star Star threa	X 94 / I Paseria p ndard ndard ndard	/9ÈC ssport (asspor 9 • Ty I filling stainle	Ukrain t pe of valve 5 valve v	e) filling v /8" UNF f with 5/8" el	= = 1 = 1 alve thread	9 0 1 2 = V
Nickel o Nickel o Stainles Rilsan o 7 • Din	6 • Flu See th nensic	iid pc ne tabl	ort con le on fro the co	ont pag	= X = V on ge	uid						ATE DNV RTN Alge Star Star threa With	X 94 / I Paseria p indard indard ad in inout fi	/9ÈC ssport (asspor 9 • Ty I filling stainle	Ukrain t pe of valve 5 valve v valve v valve (thro	e) filling v /8" UNF f vith 5/8" el ead hole l	= = 1 = 1 alve thread: UNF : : :	9 0 1 2 = V

= ELMxxx

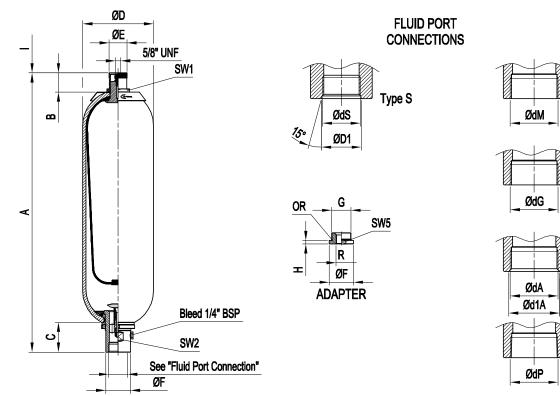
4 • Max working pressure (PS)											
Capacity litres	Carbon steel	Stainless steel									
0,2 ÷ 3	360	150 - 210 - 360									
5 ÷ 55	(100 only for ASP type) 360 (100 only for ASP type: 210 only for the version with connection L or other pressure related to connections B or U)	80 - 150 - 210 -360									

6 • Fluid port connection			
For AS0.7÷55 BSP ISO 228			
with chamfer for OR (std)	=	Α	
For AS0.2 BSP ISO 228 (std)	=	G	
For AS3÷55 Metric	=	Μ	
For AS0.7÷55 NPT-F	=	Р	
For AS3÷55 internal thread SAE	=	S	
For AS3÷55 adapter for flange SAE 3000 Ps	i =	L	
For AS3÷55 adapter for flange SAE 6000 Ps	i =	н	
For AS0.7÷55 flange ANSI	=	В	
For AS0.7÷55 flange UNI	=	U	
For AS0.7÷55 square flange	=	Q	
For AS0.7÷55 adapter *	=	R	
* assembled on the fluid valve connection type A			

2	(see Ada Ada Ada Ada pres Ada pres	pter + rupture dis e Section 8.2) pter + Safety valv pter + Needle Val pter + Stainless s pter + excluding of sure gauge of xx pter + excluding of sure gauge of xx	re, type VS224/ lve of ¼" BSP steel needle Va device with with x bar device of 90° w	TX set at xxx bar lve of 1⁄4 BSP n full scale	= Rxxx = Sxxx = EG2 = EG2X = EMxxx
	(see Ada Ada Ada Ada pres Ada pres	Section 8.2) pter + Safety valv pter + Needle Val pter + Stainless s pter + excluding of sure gauge of xx pter + excluding of sure gauge of xx	re, type VS224/ lve of ¼" BSP steel needle Va device with with x bar device of 90° w	TX set at xxx bar lve of 1⁄4 BSP n full scale	= Sxxx = EG2 = EG2X
	Ada Ada Ada Ada pres Ada pres	pter + Safety valv pter + Needle Val pter + Stainless s pter + excluding of sure gauge of xx pter + excluding of sure gauge of xx	lve of 1⁄4" BSP steel needle Va device with with x bar device of 90° w	lve of ¼ BSP n full scale	= EG2 = EG2X
	Ada Ada Ada pres Ada pres	pter + Needle Val pter + Stainless s pter + excluding of sure gauge of xx pter + excluding of sure gauge of xx	lve of 1⁄4" BSP steel needle Va device with with x bar device of 90° w	lve of ¼ BSP n full scale	= EG2 = EG2X
	Ada Ada pres Ada pres	pter + Stainless s pter + excluding o sure gauge of xx pter + excluding o sure gauge of xx	steel needle Va device with with x bar device of 90° w	n full scale	= EG2X
	Ada pres Ada pres	pter + excluding (sure gauge of xx pter + excluding (sure gauge of xx	device with with x bar device of 90° w	n full scale	
	pres Ada pres	sure gauge of xx pter + excluding of sure gauge of xx	x bar device of 90° w		
	Ada pres	pter + excluding of sure gauge of xx	device of 90° w		
	pres	sure gauge of xx			
			vhor		= ELMxx
	1 IUS	hing with degree		on < v	= ELINIAA
.		30 µ thick polyure			- 1 A
2					= W
2			olour to be she	cified	= 7
					_
				i to be specified	
	ounor	valianto apon reque	50		
3					
8 • D	Dimen	nsion			
4.10%					
		-			
		2			
	=	3			
1/2"	=	4			
3/"	=	5			
	=	6			
	<u> </u>	·			
		•			
I 72	2 =	ð			
Dime	ension	in inch - No.of	pitch for inch		
-> Diam	neter/p	bitch			
	8 • C 1/8" 1/4" 3/8" 1/2" 3/4" 1" 1" 1" 1" 1" 1" 2" Dime	8 • Dimer $1/8^{"} = 1/4^{"} = 3/8^{"} = 1/2^{"} = 3/4^{"} = 1^{"} 1/4 = 1^{"} 1/4 = 1^{"} 1/4 = 1^{"} 1/2^{"} 1/2^{"} = 1^{"} 1/2^{"} 1/2^{"} = 1^{"} 1/2^{"} 1/2^{"} = 1^{"} 1/2$	8 • Dimension $1/8^{"} = 1$ $1/4^{"} = 2$ $3/8^{"} = 3$ $1/2^{"} = 4$ $3/4^{"} = 5$ $1^{"} = 6$ $1^{"} 1/4^{"} = 7$ $1^{"} 1/4^{"} = 8$	8 • Dimension $1/8^{"} = 1$ $1/8^{"} = 1$ $1/8^{"} = 2$ $3/8^{"} = 3$ $1/2^{"} = 4$ $3/4^{"} = 5$ $1^{"} = 6$ $1^{"} 1/4^{"} = 7$ $1^{"} 1/4^{"} = 8$	8 • Dimension $1/8^{"}$

Special variants upon request

Туре М


Type G

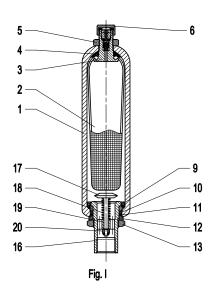
Type A

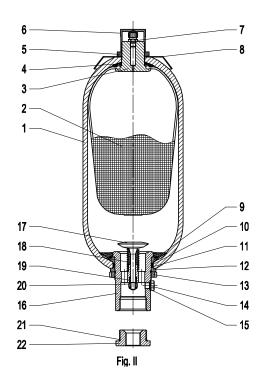
Type P

45

3.1.9 DIMENSIONS

3.1d


Accumulator type AS-ASP in carbon steel	Nominal gas volume litres	Effective gas volume litres	Working pressure bar	Ped category for the liquids of group 2	Maximum differential pressure bar	Flow rate I/min	Maximum compression ratio P0/P2	A mm	B mm	C mm	ØD mm	ØE mm	ØF mm	l mm	SW 1 mm	SW 2 mm	Dry weight kg
AS0,2 ASP0,2	0,2	0,2	360	Art.3 (3) III	100	160	1:4	250 ± 2	22	40	53 ± 0,1	20	26	140	24	23	1,7
AS0,7 ASP0,7	0,7	0,65	360	Art.3 (3) III	100	300	1:4	280 ± 1,5	47	52	90 ± 0,5	25	36	140	32	32	4,2
AS1 ASP1	1	1	360	Art.3 (3) III	100	300	1:4	295 ± 15	47	52	117 ± 1	25	36	140	32	32	5,2
AS1,5 ASP1,5	1,5	1,5	360	 	100	300	1:4	355 ±5	47	52	114 ± 1	25	36	140	32	32	6,3
AS3 ASP3	3	2,95	360	III IV	100	600	1:4	553 ± 8	47	65	114 ± 1	25	53	140	32	50	11
AS5 ASP5	5	5	360	III IV	100	600	1:4	458 ± 10	47	65	168 ± 1,5	25	53	140	32	50	15
AS10 ASP10	10	9,1	360	IV	100	1000	1:4	568 ± 10	60	101	220 ± 2	60	77	140	70	70	33
AS15 ASP15	15	14,5	360	IV	100	1000	1:4	715 ± 10	60	101	220 ± 2	60	77	140	70	70	43
AS20 ASP20	20	18,2	360	IV	100	1000	1:4	873 ± 10	60	101	220 ± 2	60	77	140	70	70	48
AS25 ASP25	25	23,5	360	IV	100	1000	1:4	1043 ± 15	60	101	220 ± 2	60	77	140	70	70	59
AS35 ASP35	35	33,5	360	IV	100	1000	1:4	1392 ± 15	60	101	220 ± 2	60	77	140	70	70	78
AS55 ASP55	55	50	360	IV	100	1000	1:4	1910 ± 15	60	101	220 ± 2	60	77	140	70	70	108


3.1e

* The maximum differential pressure is the maximum allowable difference between the maximum pressure and the minimum working pressure (P2-P1) to have an infinite life cycle of the accumulator (greater than 2,000,000 cycles). ** Flow rate measured using mineral oil with viscosity of 36 cSt at 50°C and $\Delta P = 5$ bar

3.1.10 SPARE PARTS CODE

3.1f

ltem	Description			AS 3 ASP 3	AS 5 ASP 5	AS 10-15-20-25-35-55 ASP 10-15-20-25-35-55				
1	Accumulator shell	1			Not supplie	ed as spare part				
2	Bladder	1	10092	10191 10189-10192 10193 10289				10390		
3	Gas valve body	1	2001		10333					
4	Rubber-coated washer	1	10024	10104	10334					
5	Gas valve locknut	1	10023		1(0109		10302		
6	Protection cap	1	10337		1(0103		10301		
7	Gas-fill valve	1	_			2072				
8	Name plate	1	-	10300-A	103	300-В	10300-C	10300-D		
9	Retaining ring	1	10035	10123	10127	10146	10222	10317		
10	"O" ring	1	OR4112	OR	4150	OR159	OR6212	OR181		
11	Supporting ring	1	10038	10	133	10150	10227	10320		
12	Space ring	1	10037	10	120	102	223	10319		
13	Fluid port ring nut	1	10039	10	122	102	217	10321		
14	Bleed screw	1	-		101	28		10316-A		
15	Seal ring	1	_		101	29		10336-A		
16	Fluid port body	1	10031	10)115	10	144	10311		
17	Poppet	1	10028	10	0111	102	221	10310		
18	Spring	1	10029	10)112	101	149	10322		
19	Brake bushing	1	_	10)113	1022	26	10314		
20	Selflocking nut	1	10033	10	0116	10	211	10315		
21	Adapter "O" ring	1	_	OR	2093	OR	3150	OR3218		
22	Adapter	1	_	10131/Ø t	hread code	10233/Ø thr	ead code	10323/Ø thread code		
	valve assembly s 3-4-5-6-7)	1	2002-**	2021-**	20)22-**	2042-**	2062-**		
	l port assembly s 9 ÷20)	1	2004-**	2023-**	2024-**	2025-**	2044-**	2064-**		
Gasket sets		1	2010-*	2030-* <	OR2050 10341 10342 OR4150 10133 10129 OR2093	2031-* 2031-* COR2050 10341 00342 00159 10149 10129 003150	2050-* 10341 10342 0R6212 10227 10129	2080-* 2080-* COR2050 10341 10342 OR181 10320 10336 OR3218		

3.1.11 COMMISSIONING AND MAINTENANCE

Delivery conditions

Bladder accumulators are delivered pre-charged with nitrogen at a pressure of 30 bar or at value of pressure required at time of order. The precharge value is also on the nameplate of the accumulator.

Depending on the size and quantity ordered, the bladder accumulators are shipped in boxes, in cartons, on pallets or wooden boxes on request. Unless otherwise required, certificates and documentation are provided together with the accumulators.

Handling

The original packaging is suitable for handling and storage. Where necessary, you should use suitable lifting equipment to support the weight of the accumulators.

However protect from impact the packaging and handle it with care.

Storage

During storage in the warehouse, leave the product in its original packaging, keeping it away from heat sources and naked flames. The storage temperature should be between +10 and +40°C.

After six years of storage, it is essential to proceed with the replacement of all elastomeric parts before the commissioning.

Marking on the nameplate of the accumulator

With reference to the PED 97/23/EC classification, Article 3, Paragraph 3 and / or risk categories I or II depending to the volume and maximum working pressure, the accumulator indicates the following data:

- Logo, name and country of the manufacturer
- Mounth/year of production
- Product code
- Serial number
- Maximum PS pressure and PT test pressure in bar
- Min. and max. TS working temperature in Celsius
- Volume V in litres
- Group of fluids allowed (II)
- CE marking (for volumes exceding 1 litre) with the identification number of the notified body
- Pre-charge pressure in bar

It is strictly forbidden to:

- weld, rivet or screw any item of the accumulator
- engrave or permanently stamp the surfaces of the accumulator shell and / or carry out other operations that could affect or change the mechanical properties of the accumulator
- use the accumulator as a structural element: it should not be subjected to stresses or loads
- change the data of the nameplate and / or accumulator without the permission of the manufacturer
- use a (dangerous) fluid of Group 1 with equipment designed and manufactured for fluids of Group 2.

Installation

Before installation, you must perform a visual check to verify that the accumulator has not suffered any damage during shipping / handling. Verify that the requested type matches with what stamped on the nameplate.

We recommend using the accumulator with a suitable security valve (see

Chapter 8) or a security block type BS (see Chapter 9). This device provides user and equipment protection against possible damage caused by pressure surges and also makes the maintenance of the accumulator easier, facilitating the interception and the discharge.

Provide for a space of 200 mm above the gas pre-charge valve to allow access to and control of the pre-charge equipment (see Chap.11.1).

The accumulators type AS may be installed in any position from horizontal to vertical (preferably with the pre-charge valve at the top), and the nameplate must be visible.

Proceed to the assembly so that no abnormal force affects the pipes connected directly or indirectly to the accumulator, so we recommend the use of supporting components and also fastening (please see Chapter 7) to avoid the transmission of vibrations.

If are not used EPE safety blocks, make sure that the accumulator is connected to the hydraulic circuit by suitable connection devices.

Make sure the fluid is compatible with the elastomer of the bladder. Check that the max. allowed accumulator pressure is equal to or greater than that of the hydraulic circuit and that the temperature during operation is maintained within the range expected.

Make sure the fluid does not contain contaminants and/or abrasive.

Pre-charge of nitrogen

Normally, the bladder accumulators are delivered pre-charged with pressurized gas. The pre-charge of gas can be controlled and / or adjusted before or after installation of the accumulator in the hydraulic circuit.

For the pre-charge, use only industrial dry nitrogen with a purity of min. 99%. It is important to use the nitrogen from a bottle equipped with a pressure reducing valve (see Chap.11.3). Use the EPE pre-charge and charging set type PC to check the charging pressure requires, and adjust if necessary. If the pre-charge pressure is lower than required, connect the charging hose on one side and the other side connect it to the nitrogen bottle or to the pressure reducer. Slowly fill the nitrogen in the accumulator until reaching a pressure slightly higher than that set value (+ $10 \div 15\%$). Close the bottle and remove the charging hose pipe from the pre-loading set; wait until the gas temperature has stabilized (2 hours) and calibrate the pressure, discharging the excess gas.

Make sure that the gas valve is not subject to losses and, if necessary, use soap and water.

Tighten the protective caps manually.

Hydraulic pressurization

- Check that the pre-charge pressure is adequate for the application.
- Ensure that the hydraulic pressure never exceeds the max allowed pressure (PS) shown on the accumulator shell. To avoid this risk, use a safety item (see Chap. 9).

Maintenance

- Periodically check the pre-charge pressure of the gas: after the commissioning, check after 2-3 weeks of operation and if there were no leaks, repeat the operation after 3 months; if the pressure at the same temperature was stable, repeat the test yearly. For heavy-duty applications, check the pre-charge every 6 months.
- Periodically (yearly) carry out a visual inspection of the accumulator in order to detect any early signs of deterioration such as corrosion, deformation, etc.
- Comply with the requirements of the regulations concerning the verification of the functionality of the equipment according to the country of installation of the accumulator.

Repair

If for failure, scheduled check or retest it is necessary to remove the accumulator from the system, prior to removal, isolate the accumulator from the installation and discharge pressure of the liquid.

All bladder EPE accumulators of the AS and ASP series may be repaired. It may consist in replacing the bladder, the seals, the pre-charge valve and/or the parts of the gas and fluid valve.

For reasons of functionality and security, it is recommended to use only original spare parts.

Disassembly

- Fasten the accumulator firmly in a vice or on a bench in a horizontal position, taking care not to damage the outer surface.

3.1h

- If you have not already carried out, unscrew the cap nut first and then the valve cap of the gas valve.

- Undo slotted round nut for hook wrench by using the hook wrench.

- Remove the slotted nut and the retaining ring.

3.1i

3.1j

- Allow gas escapes from the bladder with the help of the check valve until a pressure of 0 is displayed. Check if the bladder is now de-pressurizing an open valve.
- Push enough oil valve into the housing until the sealing ring and the washer can be removed.

- Remove gas valve, unscrew the nut on the gas valve and remove the nameplate.

- Remove the sealing ring and the washer.

3.11

3.1m

3.1 E DALADDER ACCUMULATORS type AS and ASP

3.10

- Remove the retaining ring, take it out, by carefully pushing the ring together.

3.1p


- Remove the oil valve from the shell.

Refitting

Tightening torques in Nm											
	0.2 I	0.7-1.5 l	3 - 5 I	10-55 I							
Fluid port ring nut	60 +10	100 +20	200 +50	450 +50							
Bleed screw	3 +1	5 +1	5 +1	30 +10							
Gas valve locknut	50 +10	80 +20	100 +20	150 +30							
Filling valve V - VX - V2	-	30 +5	30 +5	30 +5							
Valve insert V4	-	0.3 +0.,2	0.3 +0.2	0.3 +0.2							

 Cleaning and testing: clean all metallic parts on accumulator using an organic degraser - visual inspection of oil valve parts (valve poppet, spring, nut, breake bushing) - check valve for sluggishness - Clean bladder, i.e. using isopropanol. Visual inspection of bladder for faults - inner inspection of shell for signs of corrosion. In event of coated shell, check the condition of the coating. Replace the parts deemed to be bad; the o-rings must always be replaced (see spare parts Section 3.1.10).

3.1t

3.1u

3 19

3.1q

- Carefully moisten the inside of the bladder and the shell with the same medium operation. That will be used during operation.

If the pre-charge pressure is lower than required, connect the inflation tube on one side and the other of the equipment. Connect it to the cylinder of nitrogen or to the pressure reducer.

- Fold bladder somewhat and withdraw by turning it slightly.

Slowly enter the nitrogen in the accumulator until reaching a pressure slightly higher than that set (+ $10 \div 15\%$).

Close the cylinder and remove the connecting pipe from the equipment; wait until the gas temperature has stabilized (2 hours) and calibrate the pressure, discharging the excess gas.

Make sure that the gas pipe is not subject to losses and, if necessary, use soap and water.

Tighten the protective cap manually.

- Reinstall according to this sequence: o-ring, support ring and space ring.

3.1z

- Screw the slotted nut and centre the parts on the oil valve by using a plastic hammer.

- Bleed screw with sealing ring.

- Mount the bleed screw with its sealing ring.

- Mount the filling valve.

Pre-charge

- 3.1zz
- Screw the pre-charge PC equipment on the gas valve.
 Connect the equipment to the cylinder of nitrogen or to the pressure reducer with the inflation tube.
- Slowly enter the nitrogen in the accumulator until reaching a pressure slightly higher than the set value (+ 10 ÷ 15%).
- Close the cylinder and remove the connecting pipe from the equipment.
- Wait until the gas temperature has stabilized (2 hours).
- Calibrate the pressure discharging the excess gas.

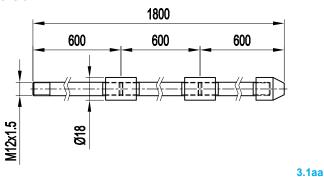
Make sure that the gas valve is not subject to losses and, if necessary, use soap and water.

Tighten the protective caps manually.

Demolition and recycling of the accumulator

Before accumulator demolition or recycling, you should always discharge completely the pre-charge pressure and remove the gas valve. If needed, proceed decontaminating in relation to the fluid used prior to demolition.

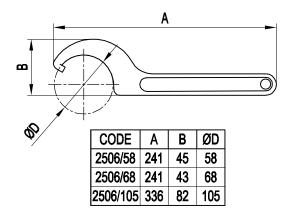
- Tighten the hexagon nut SW1 on the gas valve.



3.1.12 REPAIR TOOLS

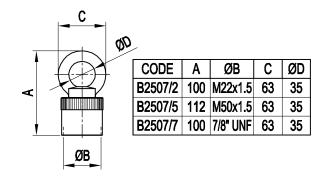
3.1.12.1 BLADDER PULL ROD

The pull rod screwed to the gas valve of the bladder for easy assembly into shell during reassembly. Pull rod is complete with fitting for EPE gas valve and 3 extension segments to accommodate all size of accumulators.


Code for complete kit: **B2505 Dimension**

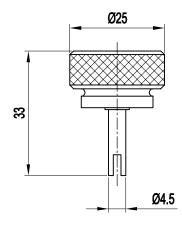
3.1.12.2 SPANNER WRENCH

Fits all standard size bladder accumulator. It is used to remove or install lock nut on fluid port assembly.


0,7÷1,5 lt code 2506/58 3÷5 lt code 2506/68 10÷55 lt code 2506/105 Dimension

3.1ab

3.1.12.3 LIFTING HOOK


To be used for the safe lifting of mounted accumulators: For accumulators 0,7÷5 It (M22x1,5) code **B2507/2** For accumulators 10÷55 It (M50x1,5) code **B2507/5** For accumulators V4 (7/8" UNF) code **B2507/7 Dimension**

3.1ac

3.1.12.4 CORE TOOL

The core tool is used to remove and reinstall the valve core type V4. Code **B2508 Dimension**

3.1ad